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A diagonally implicit method is shown to be an effective method for integrating
the multicomponent species conservation equations. The constitutive equation for
multicomponent diffusion is recast into a form analogous to that for binary diffusion,
except that the diffusion coefficient is replaced with a matrix of effective multi-
component diffusion coefficients. The resulting matrix has properties that allow the
diagonal terms to be integrated implicitly and the off-diagonal terms to be integrated
explicitly. Numerical experiments show the integration procedure is stable for time
steps much larger than the diffusion equation time step condition.c© 2001 Elsevier Science
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1. INTRODUCTION

Diffusive transport is very important to many scientific disciplines, particularly in situa-
tions where pressure is low, temperature is high, or forced convection is negligible. Examples
of such systems include chemical vapor deposition, plasma etching, and low-pressure com-
bustion. Often, mass diffusion is treated as an analogy to heat conduction: as heat flux is
proportional to the temperature gradient, diffusion mass flux of a species in a mixture is
proportional solely to its own concentration gradient. This is called Fick’s Law. The use
of Fick’s Law to predict species diffusion in multicomponent mixtures with more than two
species is inappropriate, because it does not ensure that the sum of the species diffusion
fluxes equals zero.

There are several approaches for solving multicomponent diffusion problems. The dif-
fusion fluxes can be solved for directly in terms of the mole fraction gradients and other
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driving forces, or by solving the Stefan–Maxwell formulation [1]. The Stefan–Maxwell
equations are a special case of the rigorous multicomponent formulation, in which a linear
system is solved for the diffusion velocities. In the rigorous multicomponent formulation,
the diffusion coefficients are obtained by the solution of linear systems [2, 3], whereas the
diffusion fluxes are obtained by matrix multiplication.

The Stefan–Maxwell multicomponent formulation has the advantage that the coefficients
to form the linear system involve quantities that are straightforward to evaluate, for example,
the binary mass diffusion coefficient pairs. Convergent iterative schemes have been used to
compute the diffusion velocities using the Stefan–Maxwell equations [4–6]. One potential
disadvantage of the Stefan–Maxwell equations arises when considering a transient problem,
since an iterative procedure is required to obtain convergence of the diffusion velocities
consistent with the composition field within each time step.

The rigorous multicomponent formulation is described in detail in a number of reference
texts [2, 7]. One main difference between the diffusion matrices presented in these works
is that the diffusion coefficients in [7] are formulated to obey the Onsager reciprocity
relations; that is, the diffusion coefficient matrix is symmetric. In [2], this symmetry is
artificially destroyed, but the coefficients are still rigorously correct. It has been shown that
the mass diffusion flux is a linear combination of the gradients of the mole fractions of the
species [2, 8, 9].

When solving unsteady, diffusion-dominated problems it is often desirable to integrate
the equations using an implicit or trapezoidal rule. In such cases, to avoid the iterations
within each time step required to achieve convergence for the diffusion fluxes based on
the composition field, it is useful to express the diffusion flux as a linear combination of
the mass fraction gradients. If the diffusion equations are integrated explicitly, the vari-
ables used to compute the diffusion flux are known, and the standard formulation is ad-
equate. Also, if the molar form of the species conservation equations is used, as in [5],
then the standard formulation is more convenient; however, in many nonisothermal, react-
ing flows, the mass fraction form of the species conservation equation is often preferred
[10, 11].

In the present work an approach is presented for solving the equations governing laminar
diffusion of multicomponent fluids (gas or liquid). The rigorous model for multicomponent
mass diffusion is recast into a mathematical form analogous to that for binary diffusion.
This formulation uses the matrix of ordinary multicomponent diffusion coefficients [2, 12,
13] to compute a matrix of effective ordinary diffusion coefficients, which act on the vector
of mass fraction gradients. This formulation for multicomponent diffusion is analogous to
the formulation generally used for binary diffusion, except that the diffusion coefficient
is replaced by a matrix. In addition, the unsteady formulation is expressed in terms of
consistent primitive variables, the species mass fractions.

A scheme for integrating the multicomponent diffusion equations is presented whereby
the diagonal portion of the diffusion matrix is integrated implicitly and off-diagonal parts are
integrated explicitly. This formulation has several advantages. First, it allows the individual
species equations to be decoupled, since the coefficient matrix includes only the terms
from the diagonal part of the diffusion matrix. Second, the numerical integration procedure
is shown to have improved stability properties; a von Neumann analysis is performed on
a linearized, one-dimensional system with constant coefficients, and it is shown that the
iteration matrix has a maximum eigenvalue of unity, indicating that none of the Fourier
modes will grow without bound.
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The principal advantage of the diagonally implicit scheme over that of a fully implicit
scheme is that the size of the coefficient matrix is reduced. Assuming that a numerical
solution is desired on a grid withN grid points, for a mixture ofM species, and assuming a
discrete operator stencil sizeS, the fully implicit coefficient matrix would be approximately
sizeM2× S2× N, assuming a sparse matrix representation. The proposed scheme reduces
the problem to a set ofM solves, each with a coefficient matrix sizeS× N.

The proposed scheme is tested by integrating the multicomponent diffusion equations
for an isothermal system consisting of several species that are initially perturbed from their
equilibrium concentrations. It is shown that the proposed scheme yields solutions that are
stable for time steps greater by several orders of magnitude than the time step imposed by
the stability criterion for a fully explicit scheme.

Finally, it is noted that the constitutive equation used for multicomponent species transport
is rigorously valid only for gases at low densities, but the theory is often applied to gas
mixtures at high densities, and even liquid mixtures [2].

2. MULTICOMPONENT DIFFUSION EQUATIONS

2.1. Species Continuity

The governing equations describing the transport of fluid species in a mixture are known
as the species continuity (or mass transfer) equations. There is a separate governing equation
for each of theM species in the mixture [10],

ρ
∂ψm

∂t
+ ρv · ∇ψm = −∇ · jm + rm, for m= 1, 2, . . . ,M, (1)

whereρ is the mixture density,ψm is the mass fraction of speciesm, v is the mass average
velocity of the mixture,jm is the diffusion flux of speciesm, andrm is the net mass rate of
production of speciesm by homogeneous chemical reaction.

The definition of the diffusion flux requires that this phenomenon be completely random.
As such, the diffusion fluxes of the individual species in a mixture must satisfy a mass
conservation constraint:

M∑
m=1

jm = 0. (2)

The continuity equation above is written in terms of reference velocityv, which is the
mass average velocity defined in [1, 2, 14]. An alternative approach is to define the continuity
equation in terms of the molar average velocity. Then, the constraint equation above would
be written in terms of the molar diffusion flux. Equations for the molar forms of these
equations are given in [1]. Both representations are equally valid, but the mass average
form is generally preferred since total mass, not moles, is always conserved, and it is this
velocity, rather than the molar average velocity, that appears in the continuity equation and
in Navier–Stokes equations.
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2.2. Constitutive Equations for the Diffusion Flux

2.2.1. Binary Diffusion

When only two species are present in a fluid phase, the constitutive equation relating
diffusion flux and composition gradients is known as Fick’s Law;

j A = −ρDAB∇ψA, (3)

where DAB is the binary diffusion coefficient of speciesA in B, and this expression in
Eq. (3) can be cast in either molar or mass units.

Writing a similar equation for the diffusion flux of speciesB and using Eq. (2), it can
readily be shown that, since∇ψA = −∇ψB,

DB A = DAB. (4)

2.2.2. Multicomponent Diffusion

The rigorous kinetic theory of dilute gas mixtures [2] results in a constitutive equation for
multicomponent diffusion flux that is more complex than Fick’s law for binary mixtures.
While it is known that diffusion flux depends on not only composition gradients but also
temperature and pressure gradients, as well as externally applied body forces, for the pur-
pose of demonstrating the reformulation of the constitutive equation, these effects will be
neglected. In this case, the form of the constitutive equation for multicomponent diffusion
flux is given as [2]

jm = ρwm

w̃2

M∑
n=1

wn Dmn∇χn, (5)

wherewm is the molecular weight of speciesm, w̃ is the mean molecular weight of the
mixture, Dmn is the mnth element of the matrix of ordinary multicomponent diffusion
coefficients,D, andχn is the mole fraction of speciesn. The mass conservation constraint,
Eq. (2), requires that, by definition,Dmm≡ 0. It can be shown that Eq. (5) reduces to
Fick’s Law whenM = 2.

Under certain conditions, multicomponent diffusion can be modeled with reasonable
accuracy using a Fickian model, where an effective, or mixture diffusivity is applied instead
of binary diffusion coefficients. Such a Fickian model would yield a diagonal diffusion
matrix. A conservative procedure with diagonal diffusion matrices has been presented for
integrating the transient, multicomponent diffusion equations for multicomponent systems
[15]. This situation arises when all species have comparable binary diffusion coefficients,
when all species save one are present in trace amounts, or when only one species in a
multicomponent mixture is diffusing. In systems where the species have similar molecular
weights and sizes, or a diluent or bath gas is present in great excess, the use of Fick’s law
with an effective diffusivity can yield reliable results. However, in general, application of
the effective diffusion model can lead to errors as large as 10%.
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The constitutive equation for multicomponent diffusion flux, Eq. (5), can be written in
block-diagonal matrix form as



jx1

...

jxM

jy1

...

j yM

jz1

...

jzM



= ρ

w̃2

WDW
WDW

WDW





∂χ1
∂x
...

∂χM

∂x

∂χ1
∂y

...

∂χM

∂y

∂χ1
∂z

...

∂χM

∂z



, (6)

whereW = diag[w1, w2, . . . , wM ].
It may be shown that [2]

M∑
m=1

wmDmnwn = A for all n, (7)

whereA is a constant.
A simplified notation for the above matrix expression may be introduced. Nothing

that WDW operates on each of the spatial components of theM vector of mole frac-
tion gradients and returns that same spatial component of diffusion fluxes, it may be
written

j l = ρ

w̃2
WDW∇ lχ, (8)

where it is assumed thatl is one of the spatial components of the diffusion flux or the
gradient operator.

2.3. Reformulation of the Constitutive Equation

In numerical analysis it is common to cast the species continuity equations, Eqs. (1), in
mass form (as opposed to molar) because mass is a conserved quantity. Further, Eq. (1) is
often solved in conjunction with the Navier–Stokes equations, which are themselves based
on mass quantities. However, the diffusion flux constitutive equation, Eq. (5), is derived
in terms of mole fractions gradients. To incorporate Eq. (5) into Eq. (1), the constitutive
equation will be reformulated in terms of mass fractions gradients. The resulting expression
will look mathematically similar to Fickian diffusion, except that the diffusion coefficient
in Eq. (3) will be replaced with a matrix of diffusion coefficients. In the sections that follow
it will be shown that this matrix has properties that allow it to be solved using a diagonally
implicit procedure.
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To reformulate the multicomponent constitutive equation, a conversion formula from
mole fraction to mass fraction is used:

ψm = χmwm

w̃
= χmwm∑M

n=1 χnwn

. (9)

Differentiating this expression using the chain rule yields

∇ lχ = C∇ lψ, (10)

whereC is the Jacobian matrix of the conversion formula. Themnth element ofC is

Cmn =
(
δmn− ψm

w̃

wn

)
w̃

wm
, (11)

whereδmn is the Kronecker delta. Equation (11) can also be written

Cmn = (δmn− χm)
w̃

wn
, (12)

using Eq. (9) and the properties of the Kronecker delta. It can be shown that the columns
of C sum to zero using Eq. (12) as the starting point:

M∑
m=1

Cmn =
M∑

m=1

(δmn− χm)
w̃

wn
,

= w̃

wn

(
1−

M∑
m=1

χm

)
, (13)

= 0.

Substituting Eq. (10) into the constitutive equation yields

j l = −ρ0∇ lψ, (14)

where

0≡− 1

w̃2
WDWC . (15)

The columns of0 also sum to zero. This is demonstrated by substituting Eq. (12) into
Eq. (15);

0 = ABW−1, (16)

where

A≡− 1

w̃
WDW , (17)

and

B≡ I − X. (18)
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The tensorX is the M × M matrix whose columns are formed by the vector of mole
fractions,

X =
M︷ ︸︸ ︷

dχ χ · · ·χe. (19)

Themnth element of0 is

0mn =
M∑

k=1

AmkBkn
1

wn
. (20)

The column sum of0 is

M∑
m=1

0mn =
M∑

m=1

M∑
k=1

AmkBkn
1

wn
= 1

wn

M∑
k=1

Bkn

M∑
m=1

Amk = 1

wn
A

M∑
k=1

Bkn = 0, (21)

since the columns ofB sum to zero and also using Eq. (7). The columns of0 sum to zero
due to the properties of the transformation matrix. Also, since the transformation matrix is
singular, so is0.

The singular nature of0 is important when applying Neumann or mixed boundary
conditions on the mass fractions. Since0 is singular, the boundary fluxes cannot be directly
inverted to obtain the surface gradients. There are standard ways of solving this problem,
and this situation poses no insurmountable difficulties [16].

The diffusion flux given by

j l = −ρ0∇ lψ (22)

is guaranteed to satisfy the constraint that the diffusion fluxes sum to zero. The proof is
obtained summingj i over alli species and using the fact that the column sum of0 is zero.

In its present form, Eq. (14) appears analogous to the diffusion flux expression for binary
mixtures, except that the binary diffusion coefficient in Eq. (3) is replaced with a matrix of
diffusion coefficients. Further, for the case where there are only two species present, Eq. (14)
reduces identically to Eq. (3). This result may be demonstrated by applying Eq. (14) to a
system containing only two species:

j1 = −ρ011∇ψ1− ρ012∇ψ2,
(23)

j2 = −ρ021∇ψ1− ρ022∇ψ2.

Since∇ψ1 = −∇ψ2, these expressions may be written as

j1 = −ρ(011− 012)∇ψ1, (24)

j2 = −ρ(022− 021)∇ψ2. (25)

Evaluating0,

0 = − 1

w̃2
WDWC ,

[26]

= − 1

w̃2

[
C21w1D12w̃2 C22w1D12w̃2

C11w̃2D21w̃1 C12w2D21w̃1

]
,
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sinceD11 = D22 ≡ 0. Finally, it is necessary to show that011− 012 = D12. Using Eq. (11),

011− 012 = −w1D12w2

w̃2
(C21− C22),

= −w1D12w̃2

w̃2

[
w̃

w2

(
−ψ2

w̃

w1

)
− w̃

w2

(
1−ψ2

w̃

w2

)]
,

= −w1D12w2

w̃2

[
−χ2

w̃

w1
− w̃

w2
χ1

]
,

= D12

w̃
[χ2w2+ χ1w1],

= D12 (=DAB).

Interchanging the subscript and superscript “1” and “2,” it is clear that022− 021 = D21 =
DB A. Thus, the expression for diffusion flux given by Eq. (14) reduces to Fick’s law when
applied to a binary system.

3. A DIAGONALLY IMPLICIT NUMERICAL INTEGRATION METHOD

In this section, a procedure for a finite difference integration procedure is presented, and it
is shown that the maximum eigenvalue of the linearized iteration matrix is unity, indicating
that none of the Fourier modes will grow without bound.

To demonstrate how this approach is applied and to illustrate the main points of the implicit
technique, a number of assumptions are made that simplify the form of the species continuity
equation, Eq. (1): (1) the system is one dimensional; (2) mass transfer is dominated by
diffusion andv ≈ 0; (3) no chemical reactions occur; (4) mixture density is constant; (5)
the multicomponent diffusion coefficients are independent of spatial position; and (6) the
nonlinearity in0 is ignored. Using these approximations, the species continuity equation
for themth species may be written as

∂ψm

∂t
−

M∑
n=1

0mn
∂2ψn

∂x2
= 0, for m= 1, 2, . . . ,M. (27)

If the one-dimensional computational grid containsK nodes, with an index running from
0 to K − 1, and the nodes are uniformly spaced, then the vertex of thekth grid point is
x = kh, whereh is the grid spacing. For a uniform discrete time step1t , the total elapsed
time is t = s1t , wheres is the time step index. Thus,

ψm(x, t) = ψm(kh, s1t) = ψs
m,k. (28)

At the kth grid point, finite difference approximations of the terms in the differential
equation (27) may be written as

∂ψm,k

∂t
= ψs+1

m,k − ψs
m,k

1t
+O(1t) (29)

and

∂2ψm

∂x2
= ψm,k+1− 2ψm,k + ψm,k−1

h2
+O(h2). (30)
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If the mth species is integrated implicitly and all the other terms are integrated explicity,
then the finite difference approximation to Eq. (27) is

ψs+1
m,k − ψs

m,k − Rmm
(
ψs+1

m,k+1− 2ψs+1
m,k + ψs+1

m,k−1

)
=

M∑
n=1
n6=m

Rmn
(
ψs

n,k+1− 2ψs
n,k + ψs

n,k−1

)+O(1t, h2), (31)

whereRmn ≡ (1t/h2)0mn.
Assuming a discrete Fourier transform exists, the mass fractions at any grid point can be

written as a linear combination of the Fourier modes,

ψs
m,k =

K−1∑
l=0

ξ s
m,l e

ilhk, (32)

whereξ s
m,l is the Fourier coefficient for speciesmat grid pointl at time steps, i = √−1, and

l is a summed over all grid points [17]. Substituting Eq. (32) into Eq. (31), collecting terms
and eliminating the common summation results in the equation for the Fourier coefficients,

(1+ βl Rmm) ξ
s+1
m,l = ξ s

m,l −
M∑

n=1
n6=m

βl Rmnξ
s
n,l , (33)

whereβl = 4 sin2(lh/2).
The subscriptl on ξ indicates that this equation is evaluated at thel th grid point. The

same equation applies to each grid point, so hereafter, thel subscript onξ is omitted.
Because Eq. (33) may be written for each species at each grid point, the set of equations

can be represented in matrix form. The matrix on the left-hand side of the resulting equation
is diagonal and may be readily inverted. The resulting iteration matrix for the Fourier
coefficients may thus be written as

ξ s+1 = F ξ s, (34)

where the iteration matrixF is given by

F =



1
1+βl R11

−βl R12

1+βl R11

−βl R13

1+βl R11
· · ·

−βl R21

1+βl R22

1
1+βl R22

−βl R23

1+βl R22
· · ·

−βl R31

1+βl R33

−βl R32

1+βl R33

1
1+βl R33

· · ·
...

...
...

. . .

 . (35)

It can be shown that one of the eigenvalues ofF is always unity. This is done by substituting
λ = 1 into the characteristic equation forF,

|F− I | = (βl )
M∏M

i=1(1+ βl Rii )
|R|, (36)
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whereI is the identity matrix. SinceR has a zero eigenvalue, its determinant is zero, and
the characteristic equation is satisfied.

Numerical investigation has shown that the maximum eigenvalue is unity in all cases
encountered. Since the maximum eigenvalue is unity, none of the Fourier modes will grow
without bound. Iteration matrices in singular systems such as these, having a unity eigen-
value, have been shown to be convergent [7, 18].

Lastly, it is noted that this integration scheme is not guaranteed to satisfy the constraint
on the mass fractions. It is readily verified that the error in the sum of the mass fractions is
O(1t). This is due to the particular integration scheme chosen for this example. In practice,
one may solve the integrations for the dilute species and then use the constraint equation to
solve for the bulk species. Another possible correction is

ψ∗m,k =
ψn+1

m,k∑M
m=1ψ

n+1
m,k

, (37)

where the∗ represents a correction to the mass fraction of themth species at thekth grid
point at then+ 1 time state such that the mass fraction constraint is satisfied exactly.

4. NUMERICAL EXAMPLE

In this example, transient one-dimensional diffusion is considered in a multicomponent
gas mixture of a moderate number of species, commonly present during the combustion
of hydrogen in air [19]. This diffusion problem might result, for example, as part of a
splitting scheme for a more complex reaction–diffusion problem in combustion [20]. The
mixture consists of eleven species: H2, O2, N2, H, O, N, HO2, H2O, NO, H2O2, and OH.
For convenience it is assumed that the first three species dominate the mixture and the
remaining species are dilute.

The initial temperature and pressure of the mixture are 300 K and 1 atm. It is assumed that
the three dominant species are perturbed from their equilibrium distributions as specified
by the functions

ψH2(x, 0) = 0.33(1+ 0.25 sin 0.2πx)

ψO2(x, 0) = 0.33(1− 0.15 sin 0.2πx)

ψN2(x, 0) = 0.26− 0.033 sin 0.2πx,

and the initial composition of the remaining trace species isψm(x, 0) = 0.01, where the
species subscriptm= H, O, N, HO2, H2O, NO, H2O2, and OH.

The simulations are run until equilibrium is established. The 1-D computational domain
is 10 cm long and is divided into 33 equally spaced grid points for all simulations. The
stability of the method is tested by solving Eq. (31) subject to four different time steps1t .

The ordinary multicomponent diffusion coefficients,Dmn, are evaluated using the
Chemkin Transport library [21]. These diffusion coefficients are functions of the local tem-
perature, pressure, and gas composition, and are computed at each time step. Then Eq. (15)
is used to compute0mn at each point in the domain.

The time step used for each of the four experiments was a multiple of the explicit time
step,1te, where this quantity is the maximum allowable, that is, stable time step in a fully
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FIG. 1. The time evolution of hydrogen mass fraction atx = 2.5 cm for different values of the integration
time step,1t . Time has been normalized by the maximum stable explicit time step,1te. The integration method
is fully explicit for 1t/1te = 0.1, 1.0, 2.0, and 2.19 (solid lines). The result from the diagonally implicit scheme
is shown for1t/1te = 10 (dashed gray line).

explicit integration scheme. For numerical stability,1te must satisfy

0max1te
1x2

<
1

2
, (38)

where1x is the grid spacing. In this expression, it is assumed that the value of0max is
constant over the domain. Since this is in general not true, the above criterion can only be
used to determine an approximate value of1te. Simulations using a fully explicit integration
scheme have been performed for various time step ratios,1t/1te, to determine the onset of
numerical instability. Then, simulations using the proposed diagonally implicit integration
scheme are performed for time step ratios of 10, 102, 103, and 104.

Computed results for the fully explicit scheme are represented by the solid black lines
in Fig. 1. In this figure, the mass fraction of H2 at x = 2.5 cm is plotted as a function of
time normalized by1te, for several values of the normalized integration time step1t/1te.
In this particular system the solution of the fully explicit scheme converges only when
1t/1te < 2.19. As expected, the stability boundary is encountered when1t/1te = O(1);
the actual value is somewhat greater than unity because the stability criterion shown in
Eq. (38) is approximate. Also plotted in Fig. 1 is the result from the diagonally implicit
scheme with a time step ratio of1t/1te = 10. This result is represented by the dashed gray
line. Note that the prediction of the diagonally implicit method for1t/1te = 10 is in close
quantitative agreement with the fully explicit scheme solution obtained using a time step
ratio of 0.1.

Figure 2 shows the results of the diagonally implicit scheme for time step ratios1t/1te =
10, 102, and 103. As may be seen in the figure, all calculations converge. A calculation
using a time step ratio of 104 also converges but is not included in the figure for purposes
of clarity. To compare the steady state offset of the different calculations, the exact steady
state solution—ψH2 = 0.33—is also shown in the figure.

In all cases studied, the steady state offset increases as1t increases, but the order of the
method was not rigorously computed. As stated previously, the error in the mass fraction
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FIG. 2. The time evolution of hydrogen mass fraction atx = 2.5 cm for different values of the integration
time step,1t . Time has been normalized by the maximum stable explicit time step,1te. The integration scheme
is diagonally implicit for all calculations shown.

constraint isO(1t). The accumulation of this error over time, in addition to the errors
due to the spatial discretization, which areO(1x2), and roundoff result in the steady state
offset.

5. CONCLUSION

It has been shown here that using0 to reformulate the diffusion term in the species con-
servation equation results in a rigorous multicomponent expression that is mathematically
analogous to the simple Fickian form applicable to binary systems. In addition, the prop-
erties of the matrix of effective ordinary diffusion coefficients allow the diffusion equation
to be integrated using a diagonally implicit scheme with time steps much larger than the
time step permitted with a fully explicit scheme. A linearized, one-dimensional analysis
demonstrates that the scheme presented is unconditionally stable. In addition, the diagona-
lization of the diffusion problem, Eq. (31), decouples the species conservation equations,
dramatically reducing the size of the coefficient matrix, making the problem more tractable
for systems with very large numbers of species.
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