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A diagonally implicit method is shown to be an effective method for integrating
the multicomponent species conservation equations. The constitutive equation for
multicomponent diffusion is recast into a form analogous to that for binary diffusion,
except that the diffusion coefficient is replaced with a matrix of effective multi-
component diffusion coefficients. The resulting matrix has properties that allow the
diagonal terms to be integrated implicitly and the off-diagonal terms to be integrated
explicitly. Numerical experiments show the integration procedure is stable for time
steps much larger than the diffusion equation time step conditi@reoo1 Eisevier Science
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1. INTRODUCTION

Diffusive transport is very important to many scientific disciplines, particularly in situe
tionswhere pressure is low, temperature is high, or forced convection is negligible. Exam|
of such systems include chemical vapor deposition, plasma etching, and low-pressure c
bustion. Often, mass diffusion is treated as an analogy to heat conduction: as heat flt
proportional to the temperature gradient, diffusion mass flux of a species in a mixture
proportional solely to its own concentration gradient. This is called Fick’s Law. The u:
of Fick’s Law to predict species diffusion in multicomponent mixtures with more than tw
species is inappropriate, because it does not ensure that the sum of the species diffi
fluxes equals zero.

There are several approaches for solving multicomponent diffusion problems. The
fusion fluxes can be solved for directly in terms of the mole fraction gradients and ott
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driving forces, or by solving the Stefan—Maxwell formulation [1]. The Stefan—Maxwe
equations are a special case of the rigorous multicomponent formulation, in which a lin
system is solved for the diffusion velocities. In the rigorous multicomponent formulatio
the diffusion coefficients are obtained by the solution of linear systems [2, 3], whereas
diffusion fluxes are obtained by matrix multiplication.

The Stefan—Maxwell multicomponent formulation has the advantage that the coefficie
to form the linear system involve quantities that are straightforward to evaluate, for exam
the binary mass diffusion coefficient pairs. Convergent iterative schemes have been us
compute the diffusion velocities using the Stefan—Maxwell equations [4—6]. One poten
disadvantage of the Stefan—Maxwell equations arises when considering a transient prokt
since an iterative procedure is required to obtain convergence of the diffusion veloci
consistent with the composition field within each time step.

The rigorous multicomponent formulation is described in detail in a number of referer
texts [2, 7]. One main difference between the diffusion matrices presented in these we
is that the diffusion coefficients in [7] are formulated to obey the Onsager reciproc
relations; that is, the diffusion coefficient matrix is symmetric. In [2], this symmetry i
artificially destroyed, but the coefficients are still rigorously correct. It has been shown t
the mass diffusion flux is a linear combination of the gradients of the mole fractions of t
species [2, 8, 9].

When solving unsteady, diffusion-dominated problems it is often desirable to integr
the equations using an implicit or trapezoidal rule. In such cases, to avoid the iterati
within each time step required to achieve convergence for the diffusion fluxes basec
the composition field, it is useful to express the diffusion flux as a linear combination
the mass fraction gradients. If the diffusion equations are integrated explicitly, the ve
ables used to compute the diffusion flux are known, and the standard formulation is
equate. Also, if the molar form of the species conservation equations is used, as in
then the standard formulation is more convenient; however, in many nonisothermal, re
ing flows, the mass fraction form of the species conservation equation is often prefer
[10, 11].

In the present work an approach is presented for solving the equations governing lam
diffusion of multicomponent fluids (gas or liquid). The rigorous model for multicomponel
mass diffusion is recast into a mathematical form analogous to that for binary diffusic
This formulation uses the matrix of ordinary multicomponent diffusion coefficients [2, 1
13] to compute a matrix of effective ordinary diffusion coefficients, which act on the vect
of mass fraction gradients. This formulation for multicomponent diffusion is analogous
the formulation generally used for binary diffusion, except that the diffusion coefficie
is replaced by a matrix. In addition, the unsteady formulation is expressed in terms
consistent primitive variables, the species mass fractions.

A scheme for integrating the multicomponent diffusion equations is presented wher:
the diagonal portion of the diffusion matrix is integrated implicitly and off-diagonal parts a
integrated explicitly. This formulation has several advantages. First, it allows the individt
species equations to be decoupled, since the coefficient matrix includes only the te
from the diagonal part of the diffusion matrix. Second, the numerical integration proced
is shown to have improved stability properties; a von Neumann analysis is performed
a linearized, one-dimensional system with constant coefficients, and it is shown that
iteration matrix has a maximum eigenvalue of unity, indicating that none of the Four|
modes will grow without bound.



462 WANGARD, DANDY, AND MILLER

The principal advantage of the diagonally implicit scheme over that of a fully implic
scheme is that the size of the coefficient matrix is reduced. Assuming that a numer
solution is desired on a grid witN grid points, for a mixture oM species, and assuming a
discrete operator stencil si&the fully implicit coefficient matrix would be approximately
sizeM? x % x N, assuming a sparse matrix representation. The proposed scheme red
the problem to a set d¥l solves, each with a coefficient matrix si3e< N.

The proposed scheme is tested by integrating the multicomponent diffusion equati
for an isothermal system consisting of several species that are initially perturbed from t
equilibrium concentrations. It is shown that the proposed scheme yields solutions that
stable for time steps greater by several orders of magnitude than the time step impose
the stability criterion for a fully explicit scheme.

Finally, itis noted that the constitutive equation used for multicomponent species transy
is rigorously valid only for gases at low densities, but the theory is often applied to g
mixtures at high densities, and even liquid mixtures [2].

2. MULTICOMPONENT DIFFUSION EQUATIONS

2.1. Species Continuity

The governing equations describing the transport of fluid species in a mixture are knc
as the species continuity (or mass transfer) equations. There is a separate governing eqt
for each of theM species in the mixture [10],

0 .
p%+pv~vwm=—V«jm+rm, form=12 ..., M, (1)

wherep is the mixture density/, is the mass fraction of species v is the mass average
velocity of the mixturej, is the diffusion flux of species, andr, is the net mass rate of
production of species by homogeneous chemical reaction.

The definition of the diffusion flux requires that this phenomenon be completely rando
As such, the diffusion fluxes of the individual species in a mixture must satisfy a me
conservation constraint:

M
> im=0. (2)
m=1

The continuity equation above is written in terms of reference velagityhich is the
mass average velocity definedin[1, 2, 14]. An alternative approach is to define the contini
equation in terms of the molar average velocity. Then, the constraint equation above wc
be written in terms of the molar diffusion flux. Equations for the molar forms of thes
equations are given in [1]. Both representations are equally valid, but the mass avel
form is generally preferred since total mass, not moles, is always conserved, and it is
velocity, rather than the molar average velocity, that appears in the continuity equation
in Navier—Stokes equations.
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2.2. Constitutive Equations for the Diffusion Flux
2.2.1. Binary Diffusion

When only two species are present in a fluid phase, the constitutive equation rela
diffusion flux and composition gradients is known as Fick’s Law;

ja=—pDaV¥a, (3

where D ag is the binary diffusion coefficient of speciésin B, and this expression in
Eq. (3) can be cast in either molar or mass units.

Writing a similar equation for the diffusion flux of speciBsand using Eq. (2), it can
readily be shown that, sincéya = — Vg,

DBA= DAB- (4)

2.2.2. Multicomponent Diffusion

The rigorous kinetic theory of dilute gas mixtures [2] results in a constitutive equation f
multicomponent diffusion flux that is more complex than Fick’s law for binary mixtures
While it is known that diffusion flux depends on not only composition gradients but al
temperature and pressure gradients, as well as externally applied body forces, for the
pose of demonstrating the reformulation of the constitutive equation, these effects will
neglected. In this case, the form of the constitutive equation for multicomponent diffusi
flux is given as [2]

M

. w

Jm= pw_r; E wnDmnV xn, (%)
n=1

wherewy, is the molecular weight of species, w is the mean molecular weight of the
mixture, Dy is the mnth element of the matrix of ordinary multicomponent diffusion
coefficients D, andyy is the mole fraction of specigs The mass conservation constraint,
Eq. (2), requires that, by definitio),n= 0. It can be shown that Eq. (5) reduces to
Fick's Law whenM = 2.

Under certain conditions, multicomponent diffusion can be modeled with reasona
accuracy using a Fickian model, where an effective, or mixture diffusivity is applied inste
of binary diffusion coefficients. Such a Fickian model would yield a diagonal diffusio
matrix. A conservative procedure with diagonal diffusion matrices has been presentec
integrating the transient, multicomponent diffusion equations for multicomponent syste
[15]. This situation arises when all species have comparable binary diffusion coefficiel
when all species save one are present in trace amounts, or when only one species
multicomponent mixture is diffusing. In systems where the species have similar molect
weights and sizes, or a diluent or bath gas is present in great excess, the use of Fick’s
with an effective diffusivity can yield reliable results. However, in general, application
the effective diffusion model can lead to errors as large as 10%.
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The constitutive equation for multicomponent diffusion flux, Eq. (5), can be written i
block-diagonal matrix form as

fipel
. X
JX1 :
) dxm
JXM ax
. I
In WDW day
L= WDW Db (6)
- W WDW | | 4,
Jym By
jZ]. M
9z
JZM dxm
9z
whereW = diag[wi, wo, ..., wu].
It may be shown that [2]
M
> wmDmmwa = A foralln, (7)
m=1

whereA is a constant.

A simplified notation for the above matrix expression may be introduced. Nothir
that WDW operates on each of the spatial components ofMh&ector of mole frac-
tion gradients and returns that same spatial component of diffusion fluxes, it may
written

' = L WDWV'y, (®)
w
where it is assumed thatis one of the spatial components of the diffusion flux or the
gradient operator.

2.3. Reformulation of the Constitutive Equation

In numerical analysis it is common to cast the species continuity equations, Egs. (1)
mass form (as opposed to molar) because mass is a conserved quantity. Further, Eq.
often solved in conjunction with the Navier—Stokes equations, which are themselves bz
on mass quantities. However, the diffusion flux constitutive equation, Eq. (5), is deriv
in terms of mole fractions gradients. To incorporate Eq. (5) into Eq. (1), the constituti
equation will be reformulated in terms of mass fractions gradients. The resulting express
will look mathematically similar to Fickian diffusion, except that the diffusion coefficien
in Eq. (3) will be replaced with a matrix of diffusion coefficients. In the sections that follo
it will be shown that this matrix has properties that allow it to be solved using a diagona
implicit procedure.
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To reformulate the multicomponent constitutive equation, a conversion formula frc
mole fraction to mass fraction is used:

_ XmWm XmWm

Um= "2 = : 9)
w Y oaey XnWn
Differentiating this expression using the chain rule yields
Vix =Ccv'y, (10)
whereC is the Jacobian matrix of the conversion formula. Tineth element ofC is
W\ w
Cmn = (amn - 1pm_) — (11)
Wp /) Wm
whereénn, is the Kronecker delta. Equation (11) can also be written
W
Cin= 6mn— Xm)—, (12)

Wn

using Eq. (9) and the properties of the Kronecker delta. It can be shown that the colur
of C sum to zero using Eq. (12) as the starting point:

M M i
> Con=_Gmn— xm)—,
Wn
m=1 m=1

0 M
= w—n (1 — mzzjlxm) (13)
=0.

Substituting Eq. (10) into the constitutive equation yields

j' = —pI'V'y, (14)

where

1
I'=—=;WDWC. (15)

The columns ofl” also sum to zero. This is demonstrated by substituting Eq. (12) in
Eq. (15);

[ = ABW 1, (16)
where
1
A=—-ZWDW, (17)
w
and

B=I-X. (18)
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The tensoiX is the M x M matrix whose columns are formed by the vector of mole
fractions,

X=Txx-xl (19)

Themnth element of” is

M
1
an = Z Akakn7~ (20)
Wn
k=1
The column sum of is
M M M 1 1 M M 1 M
Z an = Z Z Akaknw_n = w_n Z Bknz Amk = w_n-AZ Bkn = 07 (21)
m=1 m=1 k=1 k=1 m=1 k=1

since the columns d8 sum to zero and also using Eq. (7). The columnE glum to zero
due to the properties of the transformation matrix. Also, since the transformation matri
singular, so id".

The singular nature of is important when applying Neumann or mixed boundary
conditions on the mass fractions. Sifites singular, the boundary fluxes cannot be directly
inverted to obtain the surface gradients. There are standard ways of solving this probl
and this situation poses no insurmountable difficulties [16].

The diffusion flux given by

ji'=—pI'V'y (22)

is guaranteed to satisfy the constraint that the diffusion fluxes sum to zero. The proo
obtained summing over alli species and using the fact that the column suii & zero.

Inits present form, Eq. (14) appears analogous to the diffusion flux expression for bin
mixtures, except that the binary diffusion coefficient in Eq. (3) is replaced with a matrix
diffusion coefficients. Further, for the case where there are only two species present, Eq.
reduces identically to Eq. (3). This result may be demonstrated by applying Eq. (14) t
system containing only two species:

j1=—pT11V1 — pT 12V,

. (23)
J2 = —pl2a1Vi1 — pI'22Vipa.
SinceViyr; = —Vi,, these expressions may be written as
j1=—p[11—T12)VYr, (24)
jo=—pT22—T21) V. (25)
Evaluatingrl,
1
= -—WDWC,
w? [26]

1 [ CoawiDaoths  Coowi Db

~ ~ ~ ~ 3
w2 | C11w2D211  CrowpDogtng
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sinceD;1 = Dy, = 0. Finally, itis necessary to show tHat; — I'1o = D1o. Using Eq. (11),

w1 D 2W2
MNy—Tp= —L(Cu — C22),

__wlDlzwz PR L PR
ng 2 w1 wo 2u)2 ’

w1 D1owo w w
= T —X2— — —X1}{>»
w w

D

[ xowa + xawa],
o
= D12 (=Dap).

Interchanging the subscript and superscript “1” and “2,” it is clearfhat- I';; = Dy =
Dga. Thus, the expression for diffusion flux given by Eq. (14) reduces to Fick’s law whe
applied to a binary system.

3. ADIAGONALLY IMPLICIT NUMERICAL INTEGRATION METHOD

In this section, a procedure for afinite difference integration procedure is presented, a
is shown that the maximum eigenvalue of the linearized iteration matrix is unity, indicatil
that none of the Fourier modes will grow without bound.

Todemonstrate how this approachis applied and toillustrate the main points of the imp
technique, anumber of assumptions are made that simplify the form of the species contir
equation, Eq. (1): (1) the system is one dimensional; (2) mass transfer is dominatec
diffusion andv ~ 0; (3) no chemical reactions occur; (4) mixture density is constant; (*
the multicomponent diffusion coefficients are independent of spatial position; and (6)
nonlinearity inT" is ignored. Using these approximations, the species continuity equati
for themth species may be written as

M 2
dYm 3 0°Yn
T_ an axz :0, fOI’m:].,Z,,M (27)

If the one-dimensional computational grid contaihsodes, with an index running from
0 to K — 1, and the nodes are uniformly spaced, then the vertex dktthgrid point is

x = kh, whereh is the grid spacing. For a uniform discrete time stetp the total elapsed
time ist = sAt, wheres is the time step index. Thus,

Ym(X, 1) = Ym(kh, At = ¥ . (28)

At the kth grid point, finite difference approximations of the terms in the differentia
equation (27) may be written as

a 1,0m,k WS-H- ‘pr%k

o o (29)

and

32¢m _ Ymk+1 — 21/fm,k + Ymk-1
ax2 h2

+ O(h?). (30)
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If the mth species is integrated implicitly and all the other terms are integrated explici
then the finite difference approximation to Eq. (27) is

Yk — Vik — Ron{Vimicis — 2Vmik + Y1)

M
=3 Rud¥ies — 205 + ¥is) + O(AL, hY), (31)

n=1
n#m
whereRmn = (At/h?)Tmn.
Assuming a discrete Fourier transform exists, the mass fractions at any grid point car
written as a linear combination of the Fourier modes,

K-1
Vo= &me"™, (32)
1=0

where&3 | is the Fourier coefficient for speciesat grid point attime stefs,i = +/—1, and
| is a summed over all grid points [17]. Substituting Eq. (32) into Eq. (31), collecting tern
and eliminating the common summation results in the equation for the Fourier coefficiel

M
L+ B Rnm Emit = Eni — D AiRmnkn) (33)
n=1
n#m

whereg, = 4sirf(lh/2).
The subscript on & indicates that this equation is evaluated atltimegrid point. The
same equation applies to each grid point, so hereafter,ghlescript ort is omitted.
Because Eq. (33) may be written for each species at each grid point, the set of equat
can be represented in matrix form. The matrix on the left-hand side of the resulting equa
is diagonal and may be readily inverted. The resulting iteration matrix for the Fouri
coefficients may thus be written as

$S+l —F %-S’ (34)

where the iteration matrik is given by

1 —Bi Rz =B Rz
1+fRu1  1+ARa  1+BRu

—fiRa 1 —BiRes
1+AR2 1+BRn 1+BRx

F=1 Ry —Are (35)

1
1+BRss  1+pHRss  1+fRss

It can be shown that one of the eigenvalues isfalways unity. This is done by substituting
A = linto the characteristic equation fer

(™

Foll= ——2
=l M™M,@+BR)

IRI, (36)
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wherel is the identity matrix. Sinc® has a zero eigenvalue, its determinant is zero, an
the characteristic equation is satisfied.

Numerical investigation has shown that the maximum eigenvalue is unity in all cas
encountered. Since the maximum eigenvalue is unity, none of the Fourier modes will g
without bound. Iteration matrices in singular systems such as these, having a unity eif
value, have been shown to be convergent [7, 18].

Lastly, it is noted that this integration scheme is not guaranteed to satisfy the constr
on the mass fractions. It is readily verified that the error in the sum of the mass fraction
O(At). Thisis due to the particular integration scheme chosen for this example. In pract
one may solve the integrations for the dilute species and then use the constraint equati
solve for the bulk species. Another possible correction is

¥ = wrr‘]"ﬁ‘l 37
Yk S e

where thex represents a correction to the mass fraction ofntitie species at thkth grid
point at then + 1 time state such that the mass fraction constraint is satisfied exactly.

4. NUMERICAL EXAMPLE

In this example, transient one-dimensional diffusion is considered in a multicompon
gas mixture of a moderate number of species, commonly present during the combus
of hydrogen in air [19]. This diffusion problem might result, for example, as part of
splitting scheme for a more complex reaction—diffusion problem in combustion [20]. T
mixture consists of eleven species;, KD,, N, H, O, N, HG,, H,O, NO, H,O,, and OH.
For convenience it is assumed that the first three species dominate the mixture anc
remaining species are dilute.

The initial temperature and pressure of the mixture are 300 K and 1 atm. Itis assumed
the three dominant species are perturbed from their equilibrium distributions as speci
by the functions

Y, (X, 0) = 0.33(1 4 0.25 sin 027 x)
Yo, (X, 0) = 0.33(1 — 0.15 sin 027 x)
¥n, (X, 0) = 0.26 — 0.033 sin 027 X,

and the initial composition of the remaining trace speciegi¢x, 0) = 0.01, where the
species subscriph = H, O, N, HG,, H,O, NO, H0,, and OH.

The simulations are run until equilibrium is established. The 1-D computational dom:
is 10 cm long and is divided into 33 equally spaced grid points for all simulations. Tl
stability of the method is tested by solving Eqg. (31) subject to four different time ateps

The ordinary multicomponent diffusion coefficient®,,,, are evaluated using the
Chemkin Transport library [21]. These diffusion coefficients are functions of the local tet
perature, pressure, and gas composition, and are computed at each time step. Then Ec
is used to computE,, at each point in the domain.

The time step used for each of the four experiments was a multiple of the explicit tir
step,Ate, where this quantity is the maximum allowable, that is, stable time step in a ful
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FIG. 1. The time evolution of hydrogen mass fractionxat 2.5 cm for different values of the integration
time step,At. Time has been normalized by the maximum stable explicit time gtgp;The integration method
is fully explicit for At/At, = 0.1, 1.0, 2.0, and 2.19 (solid lines). The result from the diagonally implicit scheme
is shown forAt/At, = 10 (dashed gray line).

explicit integration scheme. For numerical stabiliyte must satisfy

FmaxAte 1
— 38
A2 2 (38)

where Ax is the grid spacing. In this expression, it is assumed that the vallig,&fis
constant over the domain. Since this is in general not true, the above criterion can only
used to determine an approximate valuagf. Simulations using a fully explicit integration
scheme have been performed for various time step ratipg\te, to determine the onset of
numerical instability. Then, simulations using the proposed diagonally implicit integratic
scheme are performed for time step ratios of 16, 10°, and 10.

Computed results for the fully explicit scheme are represented by the solid black lir
in Fig. 1. In this figure, the mass fraction oflt x = 2.5 cm is plotted as a function of
time normalized byAte, for several values of the normalized integration time ¢pAte.

In this particular system the solution of the fully explicit scheme converges only wh
At/ Ate < 2.19. As expected, the stability boundary is encountered wttgte = O(1);

the actual value is somewhat greater than unity because the stability criterion show
Eq. (38) is approximate. Also plotted in Fig. 1 is the result from the diagonally implic
scheme with a time step ratio aft /Ate = 10. This result is represented by the dashed gra
line. Note that the prediction of the diagonally implicit method Adr/ Ate = 10 is in close
guantitative agreement with the fully explicit scheme solution obtained using a time s
ratio of 0.1.

Figure 2 shows the results of the diagonally implicit scheme for time step vstjast, =
10, 1¢, and 16. As may be seen in the figure, all calculations converge. A calculatic
using a time step ratio of #Glso converges but is not included in the figure for purpose
of clarity. To compare the steady state offset of the different calculations, the exact ste
state solution—, = 0.33—is also shown in the figure.

In all cases studied, the steady state offset increasas mereases, but the order of the
method was not rigorously computed. As stated previously, the error in the mass fract
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FIG. 2. The time evolution of hydrogen mass fractionxat 2.5 cm for different values of the integration
time step,At. Time has been normalized by the maximum stable explicit time atgpThe integration scheme
is diagonally implicit for all calculations shown.

constraint isO(At). The accumulation of this error over time, in addition to the error:
due to the spatial discretization, which &@gAx?), and roundoff result in the steady state
offset.

5. CONCLUSION

It has been shown here that usifigo reformulate the diffusion term in the species con-
servation equation results in a rigorous multicomponent expression that is mathematic
analogous to the simple Fickian form applicable to binary systems. In addition, the pr
erties of the matrix of effective ordinary diffusion coefficients allow the diffusion equatio
to be integrated using a diagonally implicit scheme with time steps much larger than
time step permitted with a fully explicit scheme. A linearized, one-dimensional analy:
demonstrates that the scheme presented is unconditionally stable. In addition, the diac
lization of the diffusion problem, Eq. (31), decouples the species conservation equatic
dramatically reducing the size of the coefficient matrix, making the problem more tracta
for systems with very large numbers of species.
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